
Programmer’s Reference 5-1

                                              (26 May 2004)

          **************************************
          *                                    *
          * Section 5 - Programmer's Reference *
          *                                    *
          **************************************

    This section describes features of GAMESS programming
which are true for all machines.  See the section 'hardware
specifics' for information about specific machines.  The
contents of this section are:

Installation overview ____________________________________________________ 2
Running Distributed Data Parallel GAMESS ________________________________ 5

parallelization history ________________________________________________________5
DDI compute and data server processes _________________________________________6
memory allocations and check jobs ____________________________________________ 11
representative performance examples __________________________________________ 13

Altering program limits _________________________________________________ 21
Names of source code modules ___________________________________________ 23
Programming Conventions ______________________________________________ 27
Parallel broadcast identifiers_____________________________________________ 30
Disk files used by GAMESS______________________________________________ 32
Contents of the direct access file 'DICTNRY'________________________________ 37



Programmer’s Reference 5-2

Installation overview

    Very specific compiling directions are given in a file
provided with the GAMESS distribution, namely
         ~/gamess/misc/readme.unix
and this should be followed closely.  The directions here
are of a more general nature.

    Before starting the installation, you should also see
the pages about your computer in the 'Hardware Specifics'
section of this manual, and at the compiler version notes
that are kept in the script ‘comp’.  There might be some
special instructions for your machine.

    The first step in installing GAMESS should be to print
the manual.  If you are reading this, you've got that
done!  The second step would be to get the source code
activator compiled and linked (note that the activator
must be activated manually before it is compiled).  Third,
you should now compile all the quantum chemistry sources.
Fourth, compile the DDI message passing library, and its
process kickoff program.  Fifth, link the GAMESS program.
Finally, run all the short examples provided with GAMESS,
and very carefully compare the key results shown in the
'sample input' section against your outputs.  These
"correct" results are from a IBM RS/6000, so there may be
very tiny (last digit) precision differences for other
machines.  That's it!  The rest of this section gives a
little more detail about some of these steps.

                       * * * * *

    GAMESS will run on essentially any machine with a
FORTRAN 77 compiler.  However, even given the F77 standard
there are still a number of differences between various
machines.  For example, some chips still use 32 bit
integers, as primitive as that may seem, while many chips
now allow for 64 bit processing (and hence large run-time
memory usage). It is also necessary to have a C compiler,
as the message passing library is implemented entirely in
that language.

    Although there are many types of computers, there is
only one (1) version of GAMESS.

    This portability is made possible mainly by keeping
machine dependencies to a minimum (that is, writing in



Programmer’s Reference 5-3

FORTRAN77, not vendor specific language extensions).  The
unavoidable few statements which do depend on the hardware
are commented out, for example, with "*I64" in columns
1-4.  Before compiling GAMESS on a 64 bit machine, these
four columns must be replaced by 4 blanks.  The process of
turning on a particular machine's specialized code is
dubbed "activation".

    A semi-portable FORTRAN 77 program to activate the
desired machine dependent lines is supplied with the
GAMESS package as program ACTVTE.  Before compiling ACTVTE
on your machine, use your text editor to activate the very
few machine dependent lines in ACTVTE before compiling it.
Be careful not to change the DATA initialization!

                       * * * * *

    The quantum chemistry source code of GAMESS is in the
directory
             ~/gamess/source
and consists almost entirely of unactivated FORTRAN source
code, stored as *.src.  There is a bit of C code in this
directory to implement runtime memory allocation.

    The task of building an executable for GAMESS is:
          activate     compile        link
      *.SRC --->  *.FOR  --->  *.OBJ  ---> *.EXE
      source     FORTRAN       object    executable
       code        code         code       image
where the intermediate files *.FOR and *.OBJ are discarded
once the executable has been linked.  It may seem odd at
first to delete FORTRAN code, but this can always be
reconstructed from the master source code using ACTVTE.

    The advantage of maintaining only one master version
is obvious.  Whenever any improvements are made, they are
automatically in place for all the currently supported
machines.  There is no need to make the same changes in a
plethora of other versions.

                       * * * * *

    The Distributed Data Interface (DDI) is the message
passing layer, supporting the parallel execution of GAMESS.
It is stored in the directory tree
             ~/gamess/ddi
It is necessary to compile this software, even if you don’t
intend to run on more than one processor.  This directory
contains a file readme.ddi with directions about compiling,



Programmer’s Reference 5-4

and customizing your computer to enable the use of System V
memory allocation routines.  It also has information about
some high end parallel computer systems.

                       * * * * *

    The control language needed to activate, compile, and
link GAMESS on your brand of computer involves several
scripts, namely:
    COMP will compile a single quantum chemistry module.
    COMPALL compiles all quantum chemistry source modules.
    COMPDDI will compile the distributed data interface,
and
            generate the process kickoff program ddikick.x.
    LKED will link-edit together the quantum chemistry
         object code, and the DDI library, to produce a
         binary executable games.x.
    RUNGMS will run a GAMESS job, in serial or parallel.
    RUNALL uses RUNGMS to run all the example jobs.
There are files related to some utility programs:
    MBLDR.*      model builder (internal to Cartesian)
    CARTIC.*     Cartesian to internal coordinates
    CLENMO.*     cleans up $VEC groups
    DK3.F        prepare relativistic AO contractions.
There are files related to X windows graphics, in:
             ~/gamess/graphics
although if you have a MacIntosh (lucky you!), you should
obtain Brett Bode’s MacMolPlt program which has the same
capabilities, and much more.



Programmer’s Reference 5-5

Running Distributed Data Parallel GAMESS

    GAMESS consists of many FORTRAN files implementing its
quantum chemistry, and some C language files implementing
the Distributed Data Interface (DDI).  The directions for
compiling DDI, configuring the system parameters to permit
execution of DDI programs, and how to use the ‘ddikick.x’
program which “kicks off” GAMESS processes may be found in
‘readme.ddi’.  If you are not the person installing the
GAMESS software, you can skip reading that.

    Efficient use of GAMESS requires an understanding of
three critical issues:  The first is the difference between
two types of memory (replicated MEMORY and distributed
MEMDDI) and how these relate to the physical memory of the
computer which you are using.  Second, you must understand
to some extent the degree to which each type of computation
scales so that the proper number of nodes is selected.
Finally, many systems run -two- GAMESS processes on every
processor, and if you read on you will find out why this is
so.

    Since all code needed to implement the Distributed Data
Interface (DDI) is provided with the GAMESS source code
distribution, the program compiles and links ready for
parallel execution on all machine types.  Of course, you
may choose to run on only one processor, in which case
GAMESS will behave as if it is a sequential code, and the
full functionality of the program is available.

parallelization history

    We began to parallelize GAMESS in 1991 as part of the
joint ARPA/Air Force piece of the Touchstone Delta project.
Today, nearly all ab initio methods run in parallel,
although some of these still have a step or two running
sequentially only.  Only the RHF+CI gradients have no
parallel method coded.  We have not parallelized the semi-
empirical MOPAC runs, and probably never will.  Additional
parallel work occurred as a result of a DoD CHSSI software
initiative in 1996. This led to the DDI-based parallel
RHF+MP2 gradient program, after development of the DDI
programming toolkit itself.  Since 2002, the DoE program
SciDAC has sponsored additional parallelization.  The DDI
toolkit has been used since its 1999 introduction to add
codes for UHF+MP2 gradient, ROHF+ZAPT2 energy, and MCSCF



Programmer’s Reference 5-6

wavefunctions as well as their analytic Hessians or MCQDPT2
energy correction.

    In 1991, the parallel machine of choice was the Intel
Hypercube although small clusters of workstations could
also be used as a parallel computer.  In order to have
the best blend of portability and functionality, we chose
in 1991 to use the TCGMSG message passing library rather
than one of the early vendor's specialized libraries.  As
the major companies began to market parallel machines, and
as MPI version 1 emerged as a standard, we began to use
MPI on some equipment in 1996, while still using the very
resilient TCGMSG library on everything else.  However, in
June 1999, we retired our old friend TCGMSG when the
message passing library used by GAMESS changed to the
Distributed Data Interface, or DDI.  An SMP-optimized
version of DDI was included with GAMESS in April 2004.

    Three people have been extremely influential upon the
current parallel methodology.  Theresa Windus, a graduate
student in the early 1990s, created the first parallel
versions.  Graham Fletcher, a postdoc in the late 1990s,
is responsible for the addition of distributed data
programming concepts.  Ryan Olson rewrote the DDI software
in 2003-4 to support the modern SMP architectures well, and
this was released in April 2004 as our standard message
passing implementation.

DDI compute and data server processes

    DDI contains the usual parallel programming calls, such
as initialization/closure, point to point messages, and
the collective operations global sum and broadcast.  These
simple parts of DDI support all parallel methods developed
in GAMESS from 1991-1999, which were based on replicated
storage rather than distributed data.  However, DDI also
contains additional routines to support distributed memory
usage.

    DDI attempts to exploit the entire system in a scalable
way.  While our early work concentrated on exploiting the
use of p processors and p disks, it required that all data
in memory be replicated on every one of the p nodes.  The
use of memory also becomes scalable only if the data is
distributed across the aggregate memory of the parallel
machine.  The concept of distributed memory is contained in
the Remote Memory Access portion of MPI version 2, but so
far MPI-2 is not available from American computer vendors.



Programmer’s Reference 5-7

The original concept of distributed memory was implemented
in the Global Array toolkit of Pacific Northwest National
Laboratory (see http://www.emsl.pnl.gov/pub/docs/global).

    Basically, the idea is to provide three subroutine
calls
to access memory on remote nodes: PUT, GET, and ACCUMULATE.
These give access to a class of memory which is assumed to
be slower than local memory, but faster than disk:

    <--- fastest                           slowest --->
 registers cache(s) local_memory remote_memory disks tapes
    <--- smallest                          biggest --->

Because DDI accesses memory on other nodes by means of an
explicit subroutine call, the programmer is aware that a
message must be transmitted.  This awareness of the access
overhead should encourage algorithms that transfer many
data items in a single message.  Use of a subroutine call
to reach remote memory is a recognition of the non-uniform
memory access (NUMA) nature of parallel computers.  In
other words, the Distributed Data Interface (DDI) is an
explicitly message passing implementation of global shared
memory.

    In order to have one node pass data items to a second
node when the second node needs them, without significant
delay, the computing job on the first node must interrupt
its computation briefly to furnish the data.  This type of
communication is referred to as "one sided messages" or
"active messages" since the first node is an unwitting
participant in the process, which is driven entirely by the
requirements of the second node.



Programmer’s Reference 5-8

    The Cray T3E has a library named SHMEM to support this
type of one sided messages (and good hardware support for
this too) so, on the T3E, GAMESS runs as a single process
per CPU.  Its memory image looks like this:

            node 0           node 1
              p=0              p=1
        ---------------   ---------------
        |    GAMESS   |   |    GAMESS   |
        |   quantum   |   |   quantum   |
        |  chem code  |   |  chem code  |
        ---------------   ---------------
        |  DDI code   |   |  DDI code   |
        ---------------   ---------------  input keywords:
        |  replicated |   | replicated  |       <-- MEMORY
        |  data       |   | data        |
    -----------------------------------------
    |   |             |   |             |   |   <-- MEMDDI
    |   |  distributed|   | distributed |   |
    |   |  data       |   | data        |   |
    |   |             |   |             |   |
    |   |             |   |             |   |
    |   |             |   |             |   |
    |   ---------------   ---------------   |
    -----------------------------------------

where the box drawn around the distributed data is meant to
imply that a large data array is residing in the memory of
all nodes (in this example, half on one and half on the
other).

    Note that the input keyword MEMORY gives the amount of
storage used to duplicate small matrices on every node,
while MEMDDI gives the -total- distributed memory required
by the job.  Thus, if you are running on p nodes, the
memory that is used on any given node is

       total on any 1 node = MEMORY + MEMDDI/p

Since MEMDDI is very large, its units are in millions of
words.  The keyword MEMORY is in units of words (64 bit
quantity) and so you must either convert units carefully
or use the MWORDS synonym for MEMORY (for which the units
are also millions of words).  Since good execution speed
requires that you not exceed the physical memory belonging
to your nodes, it is important to understand that when
MEMDDI is large, you will need to choose a sufficiently
large number of nodes to keep the memory on each node



Programmer’s Reference 5-9

reasonable.

    To repeat, the DDI philosophy is to add more processors
not just for their compute performance or extra disk space,
but also to aggregate a very large total memory.  Bigger
problems will require more nodes to obtain sufficiently
large total memories!  We will give an example of how you
can estimate the number of nodes a little ways below.

    If the GAMESS task running as process p=1 in the above
example needs some values previously computed, it issues a
call to DDI_GET.  The DDI routines in process p=1 then
figure out where this "patch" of data in the big
rectangular
distributed storage actually resides.  Suppose this is on
process p=0.  The DDI routines in p=1 send a message to
p=0 to interupt its computations, after which p=0 sends a
bulk data message to process p=1's buffer.  This buffer
resides in part of the replicated storage of p=1, where
computations can occur.  Note that the quantum chemistry
layer of process p=1 was sheltered from most of the details
regarding which node owned the patch of data that process
p=1 wanted to obtain.  These details are managed by the
DDI layer.

    Note that with the exception of DDI_ACC's addition of
new terms into a distributed array, no arithmetic is done
directly upon the distributed data.  Instead, distributed
data is accesse only by DDI_GET, DDI_PUT (its counterpart
for storage of data items), and DDI_ACC (which accumulates
new terms into the distributed data).  DDI_GET and DDI_PUT
can be thought of as analogous to FORTRAN READ and WRITE
statements that transfer data between disk storage and
local
memory where computations may occur.

    It is the programmer's challenge to minimize the
number of GET/PUT/ACC calls, and to design algorithms that
maximize the chance that the patches of data are actually
within the local node's portion of the distributed data.



Programmer’s Reference 5-10

    Since the SHMEM library is available only on a few
machines, all other platforms adopt the following memory
model, which involves –two- GAMESS processes running on
every processor:

            node 0           node 1
              p=0              p=1
        ---------------   ---------------
        |    GAMESS  X|   |    GAMESS  X|        compute
        |   quantum   |   |   quantum   |       processes
        |  chem code  |   |  chem code  |
        ---------------   ---------------
        |  DDI code   |   |  DDI code   |   Input keyword:
        ---------------   ---------------
        |  replicated |   | replicated  |       <-- MEMORY
        |  data       |   | data        |
        ---------------   ---------------

              p=2              p=3
        ---------------   ---------------
        |    GAMESS   |   |    GAMESS   |         data
        |   quantum   |   |   quantum   |       servers
        |  chem code  |   |  chem code  |
        ---------------   ---------------
        |  DDI code  X|   |  DDI code  X|
        ---------------   ---------------
    -----------------------------------------  Input
keyword:
    |   |             |   |             |   |   <-- MEMDDI
    |   |  distributed|   | distributed |   |
    |   |  data       |   | data        |   |
    |   |             |   |             |   |
    |   |             |   |             |   |
    |   |             |   |             |   |
    |   ---------------   ---------------   |
    -----------------------------------------

The first half of the processes do quantum chemistry, and
the X indicates that they spend most of their time
executing some sort of chemistry.  Hence the name "compute
process".  Soon after execution, the second half of the
processes call a DDI service routine which consists of an
infinite loop to deal with GET, PUT, and ACC requests until
such time as the job ends.  The X shows that these "data
servers" execute only DDI support code.  (This makes the
data server's quantum chemistry routines the equivalent of
the human appendix).  The whole problem of interupts is now
in the hands of the operating system, as the data servers



Programmer’s Reference 5-11

are distinct processes.  To follow the same example as
before, when the compute process p=1 needs data that turns
out to reside on node 0, a request is sent to the data
server p=2 to transfer information back to the compute
process p=1.  The compute process p=0 is completely unaware
that such a transaction has occurred.

    The formula for the memory required by any single node
is unchanged, if p is the total number of nodes used,
       total on any 1 node = MEMORY + MEMDDI/p.

    As a technical matter, if you are running on a system
where all processors are in the same node (the SGI Altix is
an example), or if you are running on an IBM SP where LAPI
assists in implementing one-sided messaging, then the data
server processes are not started.  The memory model in the
illustration above is correct, if you just mentally omit
the data server processes from it.  In all cases, where the
SHMEM library is not used, the distributed arrays are
created by System V memory calls, shmget/shmat, and their
associated semaphore routines.  Your system may need to
be reconfigured to allow allocation of large shared memory
segments, see ‘readme.ddi’ for more details.

memory allocations and check jobs

    At present, not all runs require distributed memory.
For example, in an SCF computation (no hessian or MP2 to
follow) the memory needed is on the order of the square of
the basis set size, for such quantities as the orbital
coefficients, density, Fock, overlap matrices, and so on.
These are simply duplicated on every node in the MEMORY
region.  In this case the data server processes still run,
but are dormant because no distributed memory access is
attempted.

    However, closed and open shell MP2 calculations, MCSCF
wavefunctions, and their analytic hessian or MCQPDT energy
correction do use distributed memory when run in parallel.
Thus it is important to know how to obtain the correct
value for MEMDDI in a check run.

    Check runs (EXETYP=CHECK) need to run quickly, and
the fastest turn around always comes on one node only.
Runs which do not currently exploit MEMDDI distributed
storage will formally allocate their MEMORY needs, and
feel out their storage needs while skipping almost all of
the real work.  Since MEMORY is replicated, the amount



Programmer’s Reference 5-12

that is needed on 1 node remains unchanged if you later
do the true computation on more than 1 node.

    Check jobs which involve MEMDDI storage are a little
bit trickier.  As noted, we want to run on only 1 node
to get fast turn around.  However, MEMDDI is typically a
large amount of memory, and this is unlikely to be
available on a single node.  The solution is that the
data server process does not actually allocate the
MEMDDI storage, instead it just remembers what you gave
as input and checks to see if this will be adequate.  So,
you can input MEMDDI=1000 (1000 million words is equal
to 1,000 * 1,000,000 * 8 = 8 GBytes and run this check
job on a computer with only 256 MB of RAM.

    Of course, the actual computation will have to run on
a large number of such processors.  Let us continue with
this example of a run requiring 8 GBytes of distributed
data on 256 MB nodes.  Suppose that MEMORY is 2500000 in
this case (when MEMDDI is used, MEMORY is typically just
a few million words).  We need to reserve some memory
for the operating system (16 MBytes, say) and for the
GAMESS program and local storage (approx 16 MB, it is a
big program, and the compute processes should be swapped
into memory).  Thus our hypothetical 256 MB node has
224 MB available, assuming no one else is running.  The
rest of the computations proceed in million/mega words,
so the available memory per node is 224/8 = 28.  We must
choose the number of processors p to satisfy
                 needed <= available
      MEMORY + MEMDDI/p <= free physical memory
           2.5 + 1000/p <= 28
so this example requires p >= 39 compute processes.

    One more subtle point about CHECK runs with MEMDDI is
that since you are running on 1 node only, the code does
not know that you wish to run the parallel algorithm
instead of the sequential algorithm.  You must force the
CHECK job into the parallel section of the program by
 $system parall=.true. $end
There's no harm leaving this line in for the true runs,
as any job with more than one compute process is parallel
regardless of the input value PARALL.

    The check run for MCQDPT jobs will print three times
a line like this
   MAXIMUM MEMDDI THAT CAN BE USED IN ... IS x MWORDS
Typically the 2nd such step, transforming over all
occupied and virtual canonical orbitals, will be the



Programmer’s Reference 5-13

largest of the three requirements.  Its size can be
guesstimated before running, as
   (Nao*Nao+Nao)/2 * ((Nocc*Nocc+Nocc)/2 + Nocc*Nvirt)
where Nocc = NMOFZC+NMODOC+NMOACT, Nvirt=NMOEXT, and
Nao is the size of the atomic basis.  Unlike the closed
shell MP2 program, this section still does extensive
I/O operations even when MEMDDI is used, so it may be
useful to consider the three input keywords DOORD0,
PARAIO, and DELSCR when running this code.

representative performance examples

    This section describes the way in which the various
quantum chemistry computations run in parallel, and shows
some typical performance data.  This should give you as the
user some idea how many nodes can be efficiently used for
various SCFTYP and RUNTYP jobs

    The performance data you will see below were obtained
on a 16 node Intel Pentium II Linux (Beowulf-type) cluster
costing $49,000, of which $3,000 went into the switched
Fast Ethernet component.  512 MB/node means this cluster
has an aggregate memory of 8 GB.  For more details, see
    http://www.msg.ameslab.gov/GAMESS/dist.pc.shtml.
This is a low quality network, which exposes jobs with
higher communication requirements, by noting when the wall
time is much longer than the CPU.

                         ---

    The HF wavefunctions can be evaluated in parallel using
either conventional disk storage of the integrals, or via
direct recomputation of the integrals.  Some experimenting
will show which is more effective on your hardware.  As an
example of the scaling performance of RHF, ROHF, UHF, or
GVB jobs that involve only computation of the energy or its
gradient, we include here a timing table from the 16 node
PC cluster. The molecule is luciferin, which together with
the enzyme luciferase is involved in firefly light
production.  The chemical formula is C11N2S2O3H8, and
RHF/6-31G(d) has 294 atomic orbitals.  There's no molecular
symmetry.  The run is done as direct SCF, and the CPU
timing data is

                   p=1   p=2   p=4   p=8  p=16
   1e- ints        1.1   0.6   0.4   0.3   0.2
   Huckel guess     14    12    11    10    10



Programmer’s Reference 5-14

   15 RHF iters   5995  2982  1493   772   407
   properties      6.0   6.6   6.6   6.8   6.9
   1e- gradient    9.7   4.7   2.3   1.2   0.7
   2e- gradient   1080   541   267   134    68
                  ----  ----  ----  ----  ----
   total CPU      7106  3547  1780   925   492 seconds
   total wall     7107  3562  1815   950   522 seconds

Note that direct SCF should run with the wall time very
close to the CPU time as there is essentially no I/O and
not that much communication (MEMDDI storage is not used by
this kind of run).  Running the same molecule as
DFTTYP=B3LYP yields

                   p=1   p=2   p=4   p=8  p=16
   1e- ints        1.1   0.7   0.3   0.3   0.2
   Huckel guess     14    12    10    10     9
   23 DFT iters  14978  7441  3681  1876   961
   properties      6.6   6.4   6.5   7.0   6.5
   1e- gradient    9.7   4.7   2.3   1.3   0.7
   2e- grid grad  5232  2532  1225   595   303
   2e- AO grad    1105   550   270   136    69
                  ----  ----  ----  ----  ----
   total CPU     21347 10547  5197  2626  1349
   total wall    21348 10698  5368  2758  1477

and finally if we run an RHF analytic hessian, using AO
basis integrals, the result is

                   p=1   p=2   p=4   p=8  p=16
   1e- ints        1.2   0.6   0.4   0.3   0.2
   Huckel guess     14    12    10    10    10
   14 RHF iters   5639  2851  1419   742   390
   properties      6.4   6.5   6.6   7.0   6.7
   1e- grd+hss    40.9  20.9  11.9   7.7   5.8
   2e- grd+hss   21933 10859  5296  2606  1358
   CPHF          40433 20396 10016  5185  2749
                 ----- ----- -----  ----  ----
   total CPU     68059 34146 16760  8559  4519
   total wall    68102 34273 17430  9059  4978

CPU speedups for 1->16 processors for RHF gradient, DFT
gradient, and RHF analytic hessian are 14.4, 15.8, and 15.1
times faster, respectively.  The wall clock times are close
to the CPU time, indicating very little communication is
involved.  If you are interested in an explanation of how
the parallel SCF is implimented, see the main GAMESS paper,
  M.W.Schmidt, K.K.Baldridge, J.A.Boatz, S.T.Elbert,
    M.S.Gordon, J.H.Jensen, S.Koseki, N.Matsunaga,



Programmer’s Reference 5-15

K.A.Nguyen, S.J.Su, T.L.Windus, M.Dupuis, J.A.Montgomery
         J.Comput.Chem.  14, 1347-1363(1993)

                         ---

    The CIS energy and gradient code is also programmed to
have the construction of Fock-like matrices as its
computational kernel.  Its scaling is therefore very
similar to that just shown, for porphin C20N4H14, DH(d,p)
basis, 430 AOs:
                     p=1     p=2      p=4     p=8    p=16
   setup              25      25       25      25      25
   1e- ints          5.1     2.7      1.5     1.0     0.6
   orb. guess         30      25       23      22      21
   RHF iters        1647     850      452     251     152
   RHF props          19      19       19      19      19
   CIS energy      36320   18166     9098    4620    2398
   CIS lagrang      6092    3094     1545     786     408
   CPHF            20099   10183     5163    2688    1444
   CIS density      2468    1261      632     324     170
   CIS props          19      19       19      19      19
   1e- grad         40.9    18.2      9.2     4.7     2.4
   2e- grad         1644     849      423     223     122
                   -----   -----     ----    ----    ----
   total CPU       68424   34526    17420    8994    4791
   total wall      68443   34606    17853    9258    4985
which is a speedup of 14.3 for 1->16.

                         ---

    For the next type of computation, we discuss the MP2
correction.  For closed shell RHF + MP2 and unrestricted
UHF + MP2, the gradient program runs in parallel using
distributed memory, MEMDDI.  In addition, the ROHF + MP2
energy correction for OSPT=ZAPT runs in parallel using
distributed memory, but OSPT=RMP does not use MEMDDI in
parallel jobs.  All distributed memory parallel MP2 runs
resemble RHF+MP2, which is therefore the only example given
here.

   The example is a benzoquinone precursor to hongconin, a
cardioprotective natural product.  The formula is C11O4H10,
and 6-31G(d) has 245 AOs.  There are 39 valence orbitals
included in the MP2 treatment, and 15 core  orbitals.
MEMDDI must be 156 million words, so the memory computation
that was used above tells us that our 512 MB/node PC
cluster must have at least three processors to aggregate
the required MEMDDI.  MOREAD was used to provide converged
RHF orbitals, so only 3 RHF iterations are performed.  The



Programmer’s Reference 5-16

timing data are CPU and wall times (seconds) in the 1st/2nd
lines:

                p=3      p=4      p=12     p=16
  RHF iters     241      181        65       51
                243      184        69       55
  MP2 step    5,953    4,399     1,438    1,098
              7,366    5,669     2,239    1,700
  2e- grad    1,429    1,135       375      280
              1,492    1,183       413      305
              -----    -----       ---      ---
  total CPU   7,637    5,727     1,890    1,440
  total wall  9,116    7,053     2,658    2,077

                       3-->12  4-->16
       CPU speedup      4.04    3.98
       wall speedup     3.43    3.40

The wall clock time will be closer to the CPU time if the
quality of the network between the computer is improved
(remember, this run used just switched Fast Ethernet).  As
noted, the number of nodes is more influenced by a need to
aggregate the necessary total MEMDDI, more than by concerns
about scalability.  MEMDDI is typically large for MP2
parallel runs, as it is proportional to the number of
occupied orbitals squared times the number of AOs squared.

    For more details on the distributed data parallel MP2
program, see
  G.D.Fletcher, A.P.Rendell, P.Sherwood
      Mol.Phys. 91, 431-438(1997)
  G.D.Fletcher, M.W.Schmidt, M.S.Gordon
      Adv.Chem.Phys. 110, 267-294 (1999)
  G.D.Fletcher, M.W.Schmidt, B.M.Bode, M.S.Gordon
      Comput.Phys.Commun.  128, 190-200 (2000)

                         ---

    The next type of computation we will consider is
analytic computation of the nuclear Hessian (force constant
matrix).  The performance of the RHF program, based on AO
integrals, was given above, as its computational kernel
(Fock-like builds) scales just as the SCF itself.  However,
for high spin ROHF, low spin open shell SCF and TCSCF (both
done with GVB), the only option is MO basis integrals.  The
integral transformation is parallel according to
    T.L.Windus, M.W.Schmidt, M.S.Gordon
       Theoret.Chim.Acta  89, 77-88(1994).



Programmer’s Reference 5-17

It distributes ‘passes’ over nodes, so as to parallelize
the transformation’s CPU time but not the replicated
memory, or the AO integral time.  Finally the response
equation step is hardly parallel at all.  The test example
is an intermediate in the ring opening of silacyclobutane,
GVB-PP(1) or TCSCF, 180 AOs for 6-311G(2d,2p):
                     p=1    p=2     p=4    p=8   p=16
   2e- ints           83     42      21     11      5
   GVB iters         648    333     179    104     67
   replicate 2e-     n/a     81      81     81     82
   transf.           476    254     123     67     51
   1e- grd+hss         7      4       2      2      1
   2e- grd+hss      4695   2295    1165    596    313
   CP-TCSCF          344    339     331    312    325
                    ----   ----    ----   ----   ----
   total CPU        6256   3351    1904   1189    848
   total wall       6532   3538    2072   1399   1108

Clearly, the final response equation (CPHF) step is a
sequential bottleneck, as is the fact that the orbital
hessian in this step is stored entirely on the disk space
of node 0.  Since the integral transformation is run in
replicated MEMORY rather than distributing this, and since
it also needs a duplicated AO integral file be stored on
every node, the code is clearly not scalable to very many
processors.  Typically we would not request more than 3
or 4 processors for an analytic ROHF or GVB hessian.

   The final analytic hessian type is for MCSCF.  The
scalability of the MCSCF wavefunction will be given just
below, but the response equation step for MCSCF is clearly
quite scalable.  The integral transformation for the
response equation step uses distributed memory MEMDDI, and
should scale like the MP2 program (documented above).  The
test case has 8e- in 8 orbitals, and the time reflect this,
with most of the work involving the 4900 determinants.
Total speedup for 4->16 is 4.11, due to luckier work
distributing for 16 CPUs:

                      p=4      p=16
   MCSCF wfn        113.5     106.1
   DDI transf.       68.4      19.3
   1e- grd+hss        1.5       0.6
   2e- grd+hss     2024.9     509.8
   CPMCHF RHS       878.8     225.8   (RHS=right hand
sides)
   CPMCHF iters  115343.5   27885.9
                 --------  --------
   total CPU     118430.8   28747.6



Programmer’s Reference 5-18

   total wall    119766.0   30746.4

This code can clearly benefit from using many processors,
with scalability of the MCSCF step itself almost moot.

                         ---

   Now lets turn to MCSCF energy/gradient runs.  We will
illustrate two convergers, SOSCF and then FULLNR.  The
former uses a ‘pass’ type of integral transformation (ala
the GVB hessian job above), and runs in replicated memory
only (no MEMDDI).  The FULLNR converger is based on the MP2
program’s distributed memory integral transformation, so it
uses MEMDDI.  In addition, the parallel implementation of
the FULLNR step never forms the orbital hessian explicitly,
doing Davidson style iterations to predict the new
orbitals.  Thus the memory demand is almost entirely
MEMDDI.

   The example we choose is at a transition state for the
water molecule assisted proton transfer in the first
excited stat of 7-azaindole.  The formula is C7N2H6(H2O),
there are 190 active orbitals, and the active space is the
10 pi electrons in 9 pi orbitals of the azaindole portion.
There are 15,876 determinants used in the MCSCF
calculation, and 5,292 CSFs in the perturbation calculation
to follow.  See Figure 6 of G.M.Chaban, M.S.Gordon
J.Phys.Chem.A 103, 185-189(1999) if you are interested in
this chemistry.  The timing data for the SOSCF converger
are

                    p=1     p=2      p=4     p=8    p=16
   dup. 2e- ints  327.6   331.3    326.4   325.8   326.5
   transform.     285.1   153.6     88.4    57.8    47.3
   det CI          39.3    39.4     38.9    38.3    38.1
   2e- dens.        0.4     0.5      0.5     0.5     0.5
   orb. update     39.2    25.9     17.4    12.8    11.0
   iters 2-16    5340.0  3153.5   2043.7  1513.6  1308.5
   1e- grad         5.3     2.3      1.3     0.7     0.4
   2e- grad       695.6   354.9    179.4    93.2    50.9
                 ------  ------   ------  ------  ------
   total CPU      6,743   4,071    2,705   2,052   1,793
   total wall    13,761   8,289    4,986   3,429   3,899

whereas the FULLNR convergers runs like this

                    p=1     p=2      p=4     p=8    p=16
   2e- DDI trans.  2547    1385      698     354     173
   det. CI           39      39       38      38      38



Programmer’s Reference 5-19

   DM2              0.5     0.5      0.5     0.5     0.5
   FULLNR           660     376      194     101      51
   iters 2-9      24324   13440     6942    3669    1940
   1e- grad         5.3     2.3      1.2     0.7     0.4
   2e- grad         700     352      181      95      51
                 ------  ------     ----    ----    ----
   total CPU     28,288  15,605    8,066   4,268   2,265
   total wall    28,290  20,719   12,866   8,292   5,583

The first iteration is broken down into its primary steps
from the integral transformation to the orbital update,
inclusive.  The SOSCF program is clearly faster, and should
be used when the number of processors is modest (say up to
8), however the largest molecules will benefit from using
more processors and the much more scalable FULLNR program.

   One should note that the CI calculation was done by
CISTEP=ALDET, which is not presently scalable at all.  This
doesn’t matter for small active spaces like 10e- in 9
orbitals, as you can see above, but this program’s use of
replicated memory and large CPU time for big active spaces
limits MCSCF scalability in the large active space limit.

   Now lets consider the second order pertubation
correction for this example.  As noted, it is an excited
state, so the test corrects two states simultaneously (S0
and S1).  The parallel multireference perturbation program
is described in
  H.Umeda, S.Koseki, U.Nagashima, M.W.Schmidt
      J.Comput.Chem. 22, 1243-1251 (2001)
The run is given the converged S1 orbitals, so that it can
skip directly to the perturbation calculation:
                 p=1     p=2      p=4     p=8    p=16
   2e- ints      332     332      329     328     331
   MCQDPT      87921   43864    22008   11082    5697
               -----   -----    -----   -----   -----
   total CPU   88261   44205    22345   11418    6028
   total wall  91508   45818    23556   12350    6852
This corresponds to a speedup for 1->16 of 14.6.

                         ---

    In summary, most ab initio computations will run in
less time on more than one node.  However, some things can
be run only on 1 node, namely
   semi-empirical runs
   RHF+CI gradient
   Coupled-Cluster calculations



Programmer’s Reference 5-20

Some steps run with little or no speedup, forming
sequential bottlenecks that limit scalability.  They do not
prevent jobs from running in parallel, but restrict the
total number of nodes that can be effectively used:
   ROHF/GVB hessians: solution of response equations
   MCSCF: Hamiltonian and 2e- density matrix (CI)
   energy localizations: the orbital localization step
   transition moments/spin-orbit: the final property step
   MCQDPT reference weight option
Future versions of GAMESS will address these bottlenecks.

   A short summary of the useful number of nodes (based on
data like the above) would be
    RHF, ROHF, UHF, GVB energy/gradient, their
        DFT analogs, and CIS excited states      16-32+
    MCSCF energy/gradient
        SOSCF                                     4-8
        FULLNR                                    8-32+
    analytic hessians
        RHF                                      16-32+
        ROHF/GVB                                  4-8
        MCSCF                                    64-128+
    MPLEVL=2
        RHF, UHF, ROHF OSPT=ZAPT                  8-256+
        ROHF OSPT=RMP energy                      8
        MCSCF                                    16+



Programmer’s Reference 5-21

Altering program limits

     Almost all arrays in GAMESS are allocated dynamically,
but some variables must be held in common as their use is
ubiquitous.  An example would be the common block which
holds the basis set.  The following Unix script, which we
call 'mung', changes the PARAMETER statements that set
various limitations:

#!/bin/csh
#
#       automatically change GAMESS' built-in dimensions
#
chdir /u1/mike/gamess/source
#
foreach FILE (*.src)
   set FILE=$FILE:r
   echo ===== redimensioning in $FILE =====
   echo "C 01 JAN 05 - SELECT NEW DIMENSIONS" \
             > $FILE.munged
   sed -e "/MXATM=500/s//MXATM=100/" \
       -e "/MXAO=2047/s//MXAO=2047/" \
       -e "/MXRT=100/s//MXRT=100/" \
       -e "/MXSH=1000/s//MXSH=1000/" \
       -e "/MXGSH=30/s//MXGSH=30/" \
       -e "/MXGTOT=5000/s//MXGTOT=5000/" \
       -e "/MXFRG=50/s//MXFRG=1/" \
       -e "/MXDFG=5/s//MXDFG=1/" \
       -e "/MXPT=100/s//MXPT=1/" \
       -e "/MXSP=100/s//MXSP=1/" \
       -e "/MXTS=2500/s//MXTS=1/" \
       $FILE.src >> $FILE.munged
   mv $FILE.munged $FILE.src
end
exit

In this script,
   MXATM = max number of atoms
   MXAO  = max number of basis functions
   MXRT  = max number of CI roots
   MXSH  = max number of symmetry unique shells
   MXGSH = max number of Gaussians per shell
   MXGTOT= max number of symmetry unique Gaussians
   MXFRG = max number of effective fragment potentials
   MXDFG = max number of different effective fragments
   MXPT  = max number of effective fragment points
   MXSP  = max number of spheres (sfera) in PCM



Programmer’s Reference 5-22

   MXTS  = max number of tesserae in PCM

   The script shows how to -minimize- memory use, by a
small decrease in the number of atoms, while turning off
the effective fragment and PCM dimensioning.  Very little
memory can be saved by reducing the other adjustable
parameters.  Of course, the 'mung' script can also be used
to increase the dimensions!



Programmer’s Reference 5-23

Names of source code modules

     The source code for GAMESS is divided into a number
of sections, called modules, each of which does related
things, and is a handy size to edit.  The following is a
list of the different modules, what they do, and notes on
their machine dependencies.

                                              machine
module   description                         dependency
-------  -------------------------           ----------
ALDECI   Ames Lab determinant full CI code       1
ALGNCI   Ames Lab determinant general CI code
BASECP   SBKJC and HW valence basis sets
BASEXT   DH, MC, 6-311G extended basis sets
BASHUZ   Huzinaga MINI/MIDI basis sets to Xe
BASHZ2   Huzinaga MINI/MIDI basis sets Cs-Rn
BASN21   N-21G basis sets
BASN31   N-31G basis sets
BASSTO   STO-NG basis sets
BLAS     level 1 basic linear algebra subprograms
CCAUX    auxiliary routines for CC calculations
CCSDT    renormalized CCSD(T) program            1
CHGPEN   screening for charge penetration of EFPs
CISGRD   CI singles and its gradient             1
COSMO    conductor-like screening model
CPHF     coupled perturbed Hartree-Fock          1
CPMCHF   multiconfigurational CPHF               1
CPROHF   open shell/TCSCF CPHF                   1
DDI      message passing library interface code  9
DDISHM   message passing code (SHMEM interface)  9
DDIGA    message passing code for Fujitsu PP     9
DELOCL   delocalized coordinates
DFT      grid-free DFT drivers                   1
DFTAUX   grid-free DFT auxiliary basis integrals
DFTEXC   grid DFT functionals
DFTGRD   grid DFT implementation
DFTINT   grid-free DFT integrals                 1
DFTFUN   grid-free DFT functionals
DGEEV    general matrix eigenvalue problem
DMULTI   Amos' distributed multipole analysis
DRC      dynamic reaction coordinate
ECP      pseudopotential integrals
ECPDER   pseudopotential derivative integrals
ECPLIB   initialization code for ECP
ECPPOT   HW and SBKJC internally stored potentials
EIGEN    Givens-Householder, Jacobi diagonalization



Programmer’s Reference 5-24

EFDRVR   fragment only calculation drivers
EFELEC   fragment-fragment interactions
EFGRD2   2e- integrals for EFP numerical hessian
EFGRDA   ab initio/fragment gradient integrals
EFGRDB   "    "       "        "        "
EFGRDC   "    "       "        "        "
EFINP    effective fragment potential input
EFINTA   ab initio/fragment integrals
EFINTB   "    "       "        "
EFPAUL   effective fragment Pauli repulsion
EFPCOV   EFP style QM/MM boundary code
EOMCC    equation of motion excited state CCSD
FFIELD   finite field polarizabilities
FRFMT    free format input scanner
FSODCI   determinant based second order CI
GAMESS   main program, single point energy
         and energy gradient drivers, misc.
GLOBOP   Monte Carlo fragment global optimizer
GRADEX   traces gradient extremals
GRD1     one electron gradient integrals
GRD2A    two electron gradient integrals         1
GRD2B    specialized sp gradient integrals
GRD2C    general spdfg gradient integrals
GUESS    initial orbital guess
GUGDGA   Davidson CI diagonalization             1
GUGDGB       "    "        "                     1
GUGDM    1 particle density matrix
GUGDM2   2 particle density matrix               1
GUGDRT   distinct row table generation
GUGEM    GUGA method energy matrix formation     1
GUGSRT   sort transformed integrals              1
GVB      generalized valence bond HF-SCF         1
HESS     hessian computation drivers
HSS1A    one electron hessian integrals
HSS1B     "     "        "        "
HSS2A    two electron hessian integrals          1
HSS2B     "     "        "        "
INPUTA   read geometry, basis, symmetry, etc.
INPUTB    "     "        "       "
INPUTC    "     "        "       "
INT1     one electron integrals
INT2A    two electron integrals                  1
INT2B     "     "        "
IOLIB    input/output routines,etc.              2
LAGRAN   CI Lagrangian matrix                    1
LOCAL    various localization methods            1
LOCCD    LCD SCF localization analysis
LOCPOL   LCD SCF polarizability analysis
MCCAS    FOCAS/SOSCF MCSCF calculation           1



Programmer’s Reference 5-25

MCJAC    JACOBI MCSCF calculation
MCQDPT   multireference perturbation theory      1
MCQDWT   weights for MR-perturbation theory
MCQUD    QUAD MCSCF calculation                  1
MCSCF    FULLNR MCSCF calculation                1
MCTWO    two electron terms for FULLNR MCSCF     1
MCPINP   model core potential input
MCPINT   model core potential integrals
MCPLIB   model core potential library
MM23     MMCC(2,3) corrections to EOMCCSD
MOROKM   Morokuma energy decomposition           1
MP2      2nd order Moller-Plesset                1
MP2DDI   distributed data parallel MP2
MP2GRD   CPHF and density for MP2 gradients      1
MPCDAT   MOPAC parameterization
MPCGRD   MOPAC gradient
MPCINT   MOPAC integrals
MPCMOL   MOPAC molecule setup
MPCMSC   miscellaneous MOPAC routines
MTHLIB   printout, matrix math utilities
NAMEIO   namelist I/O simulator
NMR      nuclear magnetic resonance shifts
OLIX     interface code
ORDINT   sort atomic integrals                   1
PARLEY   communicate to other programs
PCM      Polarizable Continuum Model setup
PCMCAV   PCM cavity creation
PCMCV2   PCM cavity for gradients
PCMDER   PCM gradients
PCMDIS   PCM dispersion energy
PCMPOL   PCM polarizabilities
PCMVCH   PCM repulsion and escaped charge
PRPEL    electrostatic properties
PRPLIB   miscellaneous properties
PRPPOP   population properties
QEIGEN   128 bit precision RI for relativity    11
QFMM     quantum fast multipole method
QMFM     additional QFMM code
QMMM     temporary dummy routines
QREL     relativistic transformations
RHFUHF   RHF, UHF, and ROHF HF-SCF               1
RXNCRD   intrinsic reaction coordinate
RYSPOL   roots for Rys polynomials
SCFMI    molecular interaction SCF code
SCFLIB   HF-SCF utility routines, DIIS code
SCRF     self consistent reaction field
SOBRT    full Breit-Pauli spin-orbit compling
SOFFAC   spin-orbit matrix element form factors
SOZEFF   1e- spin-orbit coupling terms



Programmer’s Reference 5-26

STATPT   geometry and transition state finder
SURF     PES scanning
SYMORB   orbital symmetry assignment
SYMSLC      "        "         "
TDHF     time-dependent Hartree-Fock NLO         1
TRANS    partial integral transformation         1
TRFDM2   two particle density backtransform      1
TRNSTN   CI transition moments
TRUDGE   nongradient optimization
UMPDDI   distributed data parallel MP2
UNPORT   unportable, nasty code            3,4,5,6,7,8
VECTOR   vectorized version routines            10
VIBANL   normal coordinate analysis
VSCF     anharmonic frequencies
ZHEEV    complex matrix diagonalization
ZMATRX   internal coordinates

UNIX versions use the C code ZUNIX.C for dynamic memory.
Most UNIX versions use DDISOC.C to talk to TCP/IP sockets,
and DDIKICK.C to load GAMESS for execution.

    The machine dependencies noted above are:
1) packing/unpacking           2) OPEN/CLOSE statments
3) machine specification       4) fix total dynamic memory
5) subroutine walkback         6) error handling calls
7) timing calls                8) LOGAND function
9) message passing calls.
   DDI.SRC runs using TCP/IP socket calls (*SOC) or MPI-1
   calls (*MPI), and even contains a serial code (*SEQ),
   and works in conjunction with ddisoc.c and ddikick.c
   when TCP/IP sockets are in use.
   DDISHM.SRC implements use of SHMEM messaging.
10) vector library calls      11) REAL*16 data type



Programmer’s Reference 5-27

Programming Conventions

         The following "rules" should be adhered
         to in making changes in GAMESS.  These
         rules are important in maintaining
         portability, and should be strictly
         adhered to.

    Rule 1.  If there is a way to do it that works on all
computers, do it that way.  Commenting out statements for
the different types of computers should be your last
resort.  If it is necessary to add lines specific to your
computer, PUT IN CODE FOR ALL OTHER SUPPORTED MACHINES.
Even if you don't have access to all the types of
supported hardware, you can look at the other machine
specific examples found in GAMESS, or ask for help from
someone who does understand the various machines.  If a
module does not already contain some machine specific
statements (see the above list) be especially reluctant to
introduce dependencies.

    Rule 2.  a) Use IMPLICIT DOUBLE PRECISION(A-H,O-Z)
specification statements throughout.  b) All floating
point constants should be entered as if they were in
double precision.  The constants should contain a decimal
point and a signed two digit exponent.  A legal constant
is 1.234D-02.  Illegal examples are 1D+00, 5.0E+00, and
3.0D-2.  c) Double precision BLAS names are used
throughout, for example DDOT instead of SDOT.

         The source code activator ACTVTE will
         automatically convert these double
         precision constructs into the correct
         single precision expressions for machines
         that have 64 rather than 32 bit words.

    Rule 3.  FORTRAN 77 allows the use of generic
functions.  Thus the routine SQRT should be used in place
of DSQRT, as this will automatically be given the correct
precision by the compilers.  Use ABS, COS, INT, etc.  Your
compiler manual will tell you all the generic names.

    Rule 4.  Every routine in GAMESS begins with a card
containing the name of the module and the routine.  An
example is "C*MODULE xxxxxx  *DECK yyyyyy".  The second
star is in column 18.  Here, xxxxxx is the name of the
module, and yyyyyy is the name of the routine.



Programmer’s Reference 5-28

Furthermore, the individual decks yyyyyy are stored in
alphabetical order.  This rule is designed to make it
easier for a person completely unfamiliar with GAMESS to
find routines.  The trade off for this is that the driver
for a particular module is often found somewhere in the
middle of that module.

    Rule 5.  Whenever a change is made to a module, this
should be recorded at the top of the module.  The
information required is the date, initials of the person
making the change, and a terse summary of the change.

    Rule 6.  No lower case characters, no more than 6
letter variable names, no imbedded tabs, statements must
lie between columns 7 and 72, etc.  In other words, old
style syntax.

                       * * *

         The next few "rules" are not adhered to
         in all sections of GAMESS.  Nonetheless
         they should be followed as much as
         possible, whether you are writing new
         code, or modifying an old section.

    Rule 7.  Stick to the FORTRAN naming convention for
integer (I-N) and floating point variables (A-H,O-Z).  If
you've ever worked with a program that didn't obey this,
you'll understand why.

    Rule 8.  Always use a dynamic memory allocation
routine that calls the real routine.  A good name for the
memory routine is to replace the last letter of the real
routine with the letter M for memory.

    Rule 9.  All the usual good programming techniques,
such as indented DO loops ending on CONTINUEs,
IF-THEN-ELSE where this is clearer, 3 digit statement
labels in ascending order, no three branch GO TO's,
descriptive variable names, 4 digit FORMATs, etc, etc.

         The next set of rules relates to coding
         practices which are necessary for the
         parallel version of GAMESS to function
         sensibly.  They must be followed without
         exception!

    Rule 10.  All open, rewind, and close operations on
sequential files must be performed with the subroutines



Programmer’s Reference 5-29

SEQOPN, SEQREW, and SEQCLO respectively.  You can find
these routines in IOLIB, they are easy to use.

    Rule 11.  All READ and WRITE statements for the
formatted files 5, 6, 7 (variables IR, IW, IP, or named
files INPUT, OUTPUT, PUNCH) must be performed only by the
master task.  Therefore, these statements must be enclosed
in "IF (MASWRK) THEN" clauses.  The MASWRK variable is
found in the /PAR/ common block, and is true on the master
process only.  This avoids duplicate output from the other
processes.  At the present time, all other disk files in
GAMESS also obey this rule.

    Rule 12.  All error termination is done by means of
"CALL ABRT" rather than a STOP statement.  Since this
subroutine never returns, it is OK to follow it with a
STOP statement, as compilers may not be happy without a
STOP as the final executable statment in a routine.



Programmer’s Reference 5-30

Parallel broadcast identifiers

    GAMESS uses DDI calls to pass messages between the
parallel processes.  Every message is identified by a
unique number, hence the following list of how the numbers
are used at present.  If you need to add to these, look at
the existing code and use the following numbers as
guidelines to make your decision.  All broadcast numbers
must be between 1 and 32767.

     20            : Parallel timing
    100 -  199     : DICTNRY file reads
    200 -  204     : Restart info from the DICTNRY file
    210 -  214     : Pread
    220 -  224     : PKread
    225            : RAread
    230            : SQread
    250 -  265     : Nameio
    275 -  310     : Free format
    325 -  329     : $PROP group input
    350 -  354     : $VEC group input
    400 -  424     : $GRAD group input
    425 -  449     : $HESS group input
    450 -  474     : $DIPDR group input
    475 -  499     : $VIB group input
    500 -  599     : matrix utility routines
    800 -  830     : Orbital symmetry
    900            : ECP 1e- integrals
    910            : 1e- integrals
    920 -  975     : EFP and SCRF integrals
    980 -  999     : property integrals
   1000 - 1025     : SCF wavefunctions
   1030 - 1041     : broadcasts in DFT
   1050            : Coulomb integrals
   1200 - 1215     : MP2
   1300 - 1320     : localization
   1495 - 1499     : reserved for Jim Shoemaker
   1500            : One-electron gradients
   1505 - 1599     : EFP and SCRF gradients
   1600 - 1602     : Two-electron gradients
   1605 - 1620     : One-electron hessians
   1650 - 1665     : Two-electron hessians
   1700 - 1750     : integral transformation
   1800            : GUGA sorting
   1850 - 1865     : GUGA CI diagonalization
   1900 - 1910     : GUGA DM2 generation
   2000 - 2010     : MCSCF



Programmer’s Reference 5-31

   2100 - 2120     : coupled perturbed HF
   2150 - 2200     : MCSCF hessian
   2300 - 2309     : spin-orbit jobs



Programmer’s Reference 5-32

Disk files used by GAMESS

   These files must be defined by your control language
for executing GAMESS.  For example, on UNIX the "name"
field shown below should be set in the environment to the
actual file name to be used.  Most runs will open only a
subset of the files shown below, with only files 5, 6, 7,
and 10 existing in every run.  Only files 3, 4, 5, 6, 7,
35, and 36 contain formatted data, all others are binary
(unformatted) files.

unit  name     contents
----  ----     --------
 3   EXTBAS    external basis set library

 4   IRCDATA   archive results punched by IRC runs,
               restart data for numerical HESSIAN runs,
               summary of results for DRC and for GLOBOP.

 5   INPUT     Namelist input file. This MUST be a disk
               file, as GAMESS rewinds this file often.

 6   OUTPUT    Print output (FT06F001 on IBM mainframes)
               If not defined, UNIX systems will use the
               standard output for this file.

 7   PUNCH     Punch output. A copy of the $DATA deck,
               orbitals for every geometry calculated,
               hessian matrix, normal modes from FORCE,
               properties output, IRC restart data, etc.

 8   AOINTS    Two e- integrals in AO basis

 9   MOINTS    Two e- integrals in MO basis

10   DICTNRY   Master dictionary, for contents see below.

11   DRTFILE   Distinct row table file for -CI- or -MCSCF-

12   CIVECTR   Eigenvector file for -CI- or -MCSCF-

13   CASINTS   semi-transformed ints for FOCAS/SOSCF MCSCF
               scratch file during spin-orbit coupling

14   CIINTS    Sorted integrals for -CI- or -MCSCF-

15   WORK15    GUGA loops for Hamiltonian diagonal;



Programmer’s Reference 5-33

               ordered two body density matrix for MCSCF;
               scratch storage during GUGA Davidson diag;
               Hessian update info during 2nd order SCF;
               [ij|ab] integrals during MP2 gradient
               density matrices during determinant CI

16   WORK16    GUGA loops for Hamiltonian off-diagonal;
               unordered GUGA DM2 matrix for MCSCF;
               orbital hessian during MCSCF;
               orbital hessian for analytic hessian CPHF;
               orbital hessian during MP2 gradient CPHF;
               two body density during MP2 gradient

17   CSFSAVE   CSF data for state to state transition runs.

18   FOCKDER   derivative Fock matrices for analytic hess

20   DASORT    Sort file for various -MCSCF- or -CI- steps;
               also used by SCF level DIIS

21   DFTINTS   four center overlap ints for grid-free DFT

22   DFTGRID   mesh information for grid DFT

23   JKFILE    shell J, K, and Fock matrices for -GVB-;
               Hessian update info during SOSCF MCSCF;
               orbital gradient and hessian for QUAD MCSCF

24   ORDINT    sorted AO integrals;
               integral subsets during Morokuma analysis

25   EFPIND    electric field integrals for EFP

26   PCMDATA   gradient and D-inverse data for PCM runs

27   PCMINTS   normal projections of PCM field gradients

28   MLTPL     multipole moments of Gaussian basis function
               products during QFMM

29   MLTPLT    multipole moments of FMM boxes

30   DAFL30    direct access file for FOCAS MCSCF's DIIS;
               form factor sorting for Breit spin-orbit

31   SOINTX    Lx 2e- integrals during spin-orbit

32   SOINTY    Ly 2e- integrals during spin-orbit



Programmer’s Reference 5-34

33   SOINTZ    Lz 2e- integrals during spin-orbit

34   SORESC    work space for RESC symmetrization of SO
ints

35   SIMEN     energies from simulated annealing global
opt.

36   SIMCOR    coords from simulated annealing global opt.

37   GCILIST   determinant list for general CI program

38   HESSIAN   hessian for FMO optimisations;
               gradient for FMO gradients

40   SOCCDAT   CSF list for SOC;
               fragment densities/orbitals for FMO

41   AABB41    aabb spinor [ia|jb] integrals during UMP2

42   BBAA42    bbaa spinor [ia|jb] integrals during UMP2

43   BBBB43    bbbb spinor [ia|jb] integrals during UMP2

     files 50-63 are used for MCQDPT runs.

unit  name     contents
----  ----     --------
50   MCQD50    Direct access file for MCQDPT, its
               contents are documented in source code.
51   MCQD51    One-body coupling constants <I/Eij/J> for
               CAS-CI and other routines
52   MCQD52    One-body coupling constants for perturb.
53   MCQD53    One-body coupling constants extracted
               from MCQD52
54   MCQD54    One-body coupling constants extracted
               further from MCQD52
55   MCQD55    Sorted 2e- AO integrals
56   MCQD56    Half transformed 2e- integrals
57   MCQD57    transformed 2e- integrals of (ii|ii) type
58   MCQD58    transformed 2e- integrals of (ei|ii) type
59   MCQD59    transformed 2e- integrals of (ei|ei) type
60   MCQD60    2e- integral in MO basis arranged for
               perturbation calculations
61   MCQD61    One-body coupling constants between state
               and CSF <Alpha/Eij/J>
62   MCQD62    Two-body coupling constants between state
               and CSF <Alpha/Eij,kl/J>



Programmer’s Reference 5-35

63   MCQD63    canonical Fock orbitals  (FORMATTED)
64   MCQD64    Spin functions and orbital configuration
               functions (FORMATTED)

61   NMRINT1   derivative integrals for NMR
      ...
66   NMRINT6       “         “       “   “
67,68,69          for codes under development

     files 70-98 are used for Coupled-Clusters,
       all of these are direct access files.

unit  name     contents
----  ----     --------
70   CCREST    T1 and T2 amplitudes for restarting
71   CCDIIS    amplitude converger's scratch data
72   CCINTS    MO integrals sorted by classes
73   CCT1AMP   T1 amplitudes and some No*Nu intermediates
               for MMCC(2,3)
74   CCT2AMP   T2 amplitudes and some No**2 times Nu**2
               intermediates for MMCC(2,3)
75   CCT3AMP   M3 moments
76   CCVM      No**3 times Nu - type main intermediate
77   CCVE      No times Nu**3 - type main intermediate
80   EOMSTAR   Initial vectors for EOMCCSD calculations
81   EOMVEC1   Iterative space for R1 components
82   EOMVEC2   Iterative space for R2 components
83   EOMHC1    Singly excited components of H-bar*R
               (R - vectors from iterative space)
84   EOMHC2    Doubly excited components of H-bar*R
               (R - vectors from iterative space)
85   EOMHHHH   Intermediate used by EOMCCSD
86   EOMPPPP   Intermediate used by EOMCCSD
87   EOMRAMP   Converged EOMCCSD amplitudes
88   EOMRTMP   Converded EOMCCSD amplitudes for meom=2
               (if the max. no. of iterations exceeded)
89   EOMDG12   Diagonal part of H-bar
90   MMPP      Elements of the diagonal part of
               triples-triples part of H-bar
91   MMHPP     Elements of the diagonal part of
               triples-triples part of H-bar
92   MMCIVEC   Converged CISD vectors
93   MMCIVC1   Converged CISD vectors for mci=2
               (if the max. no. of iterations exceeded)
94   MMCIITR   Iterative space in CISD calculations
95   MMNEXM    No**3 times Nu - type main intermediate
96   MMNEXE    No times Nu**3 - type main intermediate



Programmer’s Reference 5-36

97   MMNREXM   No**3 times Nu - type main intermediate
98   MMNREXE   No times Nu**3 - type main intermediate



Programmer’s Reference 5-37

Contents of the direct access file 'DICTNRY'

     1. Atomic coordinates
     2. various energy quantities in /ENRGYS/
     3. Gradient vector
     4. Hessian (force constant) matrix
   5-6. not used
     7. PTR - symmetry transformation for p orbitals
     8. DTR - symmetry transformation for d orbitals
     9. FTR - symmetry transformation for f orbitals
    10. GTR - symmetry transformation for g orbitals
    11. Bare nucleus Hamiltonian integrals
    12. Overlap integrals
    13. Kinetic energy integrals
    14. Alpha Fock matrix (current)
    15. Alpha orbitals
    16. Alpha density matrix
    17. Alpha energies or occupation numbers
    18. Beta Fock matrix (current)
    19. Beta orbitals
    20. Beta density matrix
    21. Beta energies or occupation numbers
    22. Error function interpolation table
    23. Old alpha Fock matrix
    24. Older alpha Fock matrix
    25. Oldest alpha Fock matrix
    26. Old beta Fock matrix
    27. Older beta Fock matrix
    28. Oldest beta Fock matrix
    29. Vib 0 gradient in FORCE (numerical hessian)
    30. Vib 0 alpha orbitals in FORCE
    31. Vib 0 beta  orbitals in FORCE
    32. Vib 0 alpha density matrix in FORCE
    33. Vib 0 beta  density matrix in FORCE
    34. dipole derivative tensor in FORCE.
    35. frozen core Fock operator
    36. Lagrangian multipliers
    37. floating point part of common block /OPTGRD/
int 38. integer part of common block /OPTGRD/
    39. ZMAT of input internal coords
int 40. IZMAT of input internal coords
    41. B matrix of redundant internal coords
    42. not used.
    43. Force constant matrix in internal coordinates.
    44. SALC transformation
    45. symmetry adapted Q matrix
    46. S matrix for symmetry coordinates



Programmer’s Reference 5-38

    47. ZMAT for symmetry internal coords
int 48. IZMAT for symmetry internal coords
    49. B matrix
    50. B inverse matrix
    51. overlap matrix in Lowdin basis,
        temp Fock matrix storage for ROHF
    52. genuine MOPAC overlap matrix
    53. MOPAC repulsion integrals
    54. exchange integrals for screening
    55. orbital gradient during SOSCF MCSCF
    56. orbital displacement during SOSCF MCSCF
    57. orbital hessian during SOSCF MCSCF
    58. reserved for Pradipta
    59. Coulomb integrals in Ruedenberg localizations
    60. exchange integrals in Ruedenberg localizations
    61. temp MO storage for GVB and ROHF-MP2
    62. temp density for GVB
    63. dS/dx matrix for hessians
    64. dS/dy matrix for hessians
    65. dS/dz matrix for hessians
    66. derivative hamiltonian for OS-TCSCF hessians
    67. partially formed EG and EH for hessians
    68. MCSCF first order density in MO basis
    69. alpha Lowdin populations
    70. beta Lowdin populations
    71. alpha orbitals during localization
    72. beta orbitals during localization
    73. alpha localization transformation
    74. beta localization transformation
    75. fitted EFP interfragment repulsion values
    76. model core potential information
    77. model core potential information
    78. "Erep derivative" matrix associated with F-a terms
    79. "Erep derivative" matrix associated with S-a terms
    80. EFP 1-e Fock matrix including induced dipole terms
    81. not used
    82. MO-based Fock matrix without any EFP contributions
    83. LMO centroids of charge
    84. d/dx dipole velocity integrals
    85. d/dy dipole velocity integrals
    86. d/dz dipole velocity integrals
    87. unmodified h matrix during SCRF or EFP
    88. reserved for Ivana Adamovic
    89. EFP multipole contribution to one e- Fock matrix
    90. ECP coefficients
int 91. ECP labels
    92. ECP coefficients
int 93. ECP labels
    94. bare nucleus Hamiltonian during FFIELD runs



Programmer’s Reference 5-39

    95. x dipole integrals, in AO basis
    96. y dipole integrals, in AO basis
    97. z dipole integrals, in AO basis
    98. former coords for Schlegel geometry search
    99. former gradients for Schlegel geometry search
   100. not used

     records 101-248 are used for NLO properties

101. U'x(0)         149. U''xx(-2w;w,w)    200. UM''xx(-
w;w,0)
102.   y            150.    xy             201.     xy
103.   z            151.    xz             202.     xz
104. G'x(0)         152.    yy             203.     yz
105.   y            153.    yz             204.     yy
106.   z            154.    zz             205.     yz
107. U'x(w)         155. G''xx(-2w;w,w)    206.     zx
108.   y            156.    xy             207.     zy
109.   z            157.    xz             208.     zz
110. G'x(w)         158.    yy             209. U''xx(0;w,-
w)
111.   y            159.    yz             210.    xy
112.   z            160.    zz             211.    xz
113. U'x(2w)        161. e''xx(-2w;w,w)    212.    yz
114.   y            162.    xy             213.    yy
115.   z            163.    xz             214.    yz
116. G'x(2w)        164.    yy             215.    zx
117.   y            165.    yz             216.    zy
118.   z            166.    zz             217.    zz
119. U'x(3w)        167. UM''xx(-2w;w,w)   218. G''xx(0;w,-
w)
120.   y            168.     xy            219.    xy
121.   z            169.     xz            220.    xz
122. G'x(3w)        170.     yy            221.    yz
123.   y            171.     yz            222.    yy
124.   z            172.     zz            223.    yz
125. U''xx(0)       173. U''xx(-w;w,0)     224.    zx
126.    xy          174.    xy             225.    zy
127.    xz          175.    xz             226.    zz
128.    yy          176.    yz             227. e''xx(0;w,-
w)
129.    yz          177.    yy             228.    xy
130.    zz          178.    yz             229.    xz
131. G''xx(0)       179.    zx             230.    yz
132.    xy          180.    zy             231.    yy
133.    xz          181.    zz             232.    yz
134.    yy          182. G''xx(-w;w,0)     233.    zx
135.    yz          183.    xy             234.    zy
136.    zz          184.    xz             235.    zz



Programmer’s Reference 5-40

137. e''xx(0)       185.    yz             236.
UM''xx(0;w,-w)
138.    xy          186.    yy             237.     xy
139.    xz          187.    yz             238.     xz
140.    yy          188.    zx             239.     yz
141.    yz          189.    zy             240.     yy
142.    zz          190.    zz             241.     yz
143. UM''xx(0)      191. e''xx(-w;w,0)     242.     zx
144.     xy         192.    xy             243.     zy
145.     xz         193.    xz             244.     zz
146.     yy         194.    yz
147.     yz         195.    yy
148.     zz         196.    yz
                    197.    zx
                    198.    zy
                    199.    zz

    245. old NLO Fock matrix
    246. older NLO Fock matrix
    247. oldest NLO Fock matrix
    249. polarizability derivative tensor for Raman
    250. transition density matrix in AO basis
    251. static polarizability tensor alpha
    252. X dipole integrals in MO basis
    253. Y dipole integrals in MO basis
    254. Z dipole integrals in MO basis
    255. alpha MO symmetry labels
    256. beta MO symmetry labels
    257. unused
    258. Vnn gradient during MCSCF hessian
    259. core Hamiltonian from der.ints during MCSCF
hessian
260-261. unused
    262. MO symmetry labels during determinant CI
    263. PCM nuclei/induced nuclear Charge operator
    264. PCM electron/induced nuclear Charge operator
    265. pristine guess alpha orbs (MOREAD or
Huckel+INSORB)
    266. EFP/PCM IFR sphere information
    267. fragment LMO expansions, for EFP Pauli
    268. fragment Fock operators, for EFP Pauli
269-275. not used
    276. Vib 0 Q matrix    in FORCE
    277. Vib 0 h integrals in FORCE
    278. Vib 0 S integrals in FORCE
    279. Vib 0 T integrals in FORCE
    280. Zero field LMOs during numerical polarizability
    281. Alpha zero field dens. during num. polarizability
    282. Beta zero field dens. during num. polarizability



Programmer’s Reference 5-41

    283. zero field Fock matrix. during num. polarizability
    284. reserved for Yousung Jung
    286. oriented localized molecular orbitals
    287. density matrix of oriented LMOs
290-299. reserved for Alex Granovsky
    301. alpha Pocc during MP2 or CIS grad (see also 361-
369)
    302. alpha Pvir during MP2 gradient
    303. alpha Wai during MP2 gradient
    304. alpha Lagrangian Lai during MP2 or CI gradient
    305. alpha Wocc during MP2 gradient
    306. alpha Wvir during MP2 gradient
    307. alpha P(MP2)-P(RHF) during MP2 or CIS gradient
    308. alpha SCF density during MP2 or CIS gradient
    309. alpha energy weighted density in MP2 or CIS grad
    311. Supermolecule h during Morokuma
    312. Supermolecule S during Morokuma
    313. Monomer 1 orbitals during Morokuma
    314. Monomer 2 orbitals during Morokuma
    315. combined monomer orbitals during Morokuma
    316. RHF density in CI grad, nonorthogonal MOs in SCF-
MI
    317. unzeroed Fock matrix when MOs are frozen
    318. MOREAD orbitals when MOs are frozen
    319. bare Hamiltonian without EFP contribution
    320. MCSCF active orbital density
    321. MCSCF DIIS error matrix
    322. MCSCF orbital rotation indices
    323. Hamiltonian matrix during QUAD MCSCF
    324. MO symmetry labels during MCSCF
    325. final uncanonicalized MCSCF orbitals
    330. CEL matrix during PCM
    331. VEF matrix during PCM
    332. QEFF matrix during PCM
    333. ELD matrix during PCM
    340. DFT alpha Fock matrix
    341. DFT beta Fock matrix
    342. DFT screening integrals
    343. DFT: V aux basis only
    344. DFT density gradient d/dx integrals
    345. DFT density gradient d/dy integrals
    346. DFT density gradient d/dz integrals
    347. DFT M[D] alpha density resolution in aux basis
    348. DFT M[D] beta density resolution in aux basis
    349. DFT orbital description
    350. overlap of true and auxiliary DFT basis
    351. previous iteration DFT alpha density
    352. previous iteration DFT beta density
    353. DFT screening matrix (true and aux basis)



Programmer’s Reference 5-42

    354. DFT screening integrals (aux basis only)
    355. h in MO basis during DDI partial transf
361-369. same as 301-309, but for beta orbitals of UMP2.
    370. left transformation for pVp
    371. right transformation for pVp
    370. basis A (large component) during NESC
    371. basis B (small component) during NESC
    372. difference basis set A-B1 during NESC
    373. basis N (rel. normalized large component)
    374. basis B1 (small component) during NESC
    375. charges of non-relativistic atoms in NESC
    376. common nuclear charges for all NESC basis
    377. common coordinates for all NESC basis
    378. common exponent values for all NESC basis
    372. left transformation for V  during RESC
    373. right transformation for V during RESC
    374. 2T, T is kinetic energy integrals during RESC
    375. pVp integrals during RESC
    376. V integrals during RESC
    377. Sd, overlap eigenvalues during RESC
    378. V, overlap eigenvectors during RESC
    379. Lz integrals
    380. reserved for Ly integrals.
    381. reserved for Lx integrals.
    382. X, AO orthogonalisation matrix during RESC
    383. Td, eigenvalues of 2T during RESC
    384. U, eigenvectors of kinetic energy during RESC
    385. exponents and contraction for the original basis
int 386. shell integer arrays for the original basis
    387. exponents and contraction for uncontracted basis
int 388. shell integer arrays for the uncontracted basis
    389. Transformation to contracted basis
    390. S integrals in the internally uncontracted basis
    391. charges of non-relativistic atoms in RESC
    392. copy of one e- integrals in MO basis in SO-MCQDPT
    393. Density average over all $MCQD groups in SO-MCQDPT
    394. overlap integrals in 128 bit precision
    395. kinetic energy in 128 bit precision, for
relativity

    In order to correctly pass data between different
machine types when running in parallel, it is required
that a DAF record must contain only floating point values,
or only integer values.  No logical or Hollerith data may
be stored.  The final calling argument to DAWRIT and
DAREAD must be 0 or 1 to indicate floating point or
integer values are involved.  The records containing
integers are so marked in the list below.



Programmer’s Reference 5-43

    Physical record 1 (containing the DAF directory) is
written whenever a new record is added to the file.  This
is invisible to the programmer.  The numbers shown above
are "logical record numbers", and are the only thing that
the programmer need be concerned with.


